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The problem of determining the stresses arising during the torsion of a cylin-
drical bar of elastic-ideal plastic material was posed a long time ago [1 and
2]. The major difficulty is that the boundary separating the elastic and
plastic regions 1s unknown and its determination is part of the processes of
finding the solution. The exact solution for a circular cross-section was
found in [1], and that for an almost elliptic cross-section was found in [3].
When the cross-section 1s a polygon [4], this problem is reduced to the deter-
mination of two functions of a complex variable that are analytic in the
upper half-plane and satisfy certain boundary-value conditions on the real
axes. In [3 and 5}, an inverse method was proposed in which the shape of

the e¢lastic core 1s used to find the cross-section. In L6], the inverse
method was used to reduce the elastic-plastic torsion problem to a nonlinear
singular integral equation which was not investigated any further. 1In [71,
necessary conditions for the existence of the solution of the elastic-plastic
torsion problem were ascertalned. Various approximate methods were suggested
in {4 and 8 to 12].

Below we will study the case of an oval cross-section for angles of twist
such that the elastic-plastic boundary has no point in common with the longi-
tudinal surface of the bar. By means of a legendre transformation, the pre-
sent problem has been reduced to the Dirichlet problem in a circle for the
Monge-Ampere equation of the elliptic type. Moreover, the elastic-plastic
boundary is determined from the normal derivative of the solution on the
boundary of the circle. The existence and uniqueness of the solution of the
elastic-plastic torsion problem has been proved. A number of estimates of
practical interest have also been obtalned.

1. Formulation of problem. We will consider the elastic-plastilc torsion
of a cylindrical bar whose cross-section F 1s bounded by the strictly con-

cave contour I’ . We will assume that the radius of curvature p{€) > O
exists at each point of the contour ' and that as a function of the

* Summary of this pager was published by the author in the Dokl.Akad.Nauk
SSSR, Vol.149, M 5, 1963,

1038



Elastic-plastic torsion problem for a cylindrical bar 1039

arc-length & 1t 1s a function of class (®, 1.e. that d2p(s)/ds® 1is con-
tinuous. It 1s clear that 00 > Pyax > P () > Pmin > 0, where Pmax,
and Pmin are the maximum and minimum values of the radius of curvature,
respectively. We will use the triangular Cartesian axes xyz with the
z-axls parallel to the generatrix of the cylindrical surface of the origin

¢ in F . Let & be the shear modulus, &% the plastic constant, o the
angle of twist per unit length, and (Q the area of F . We willl use the
notation 4 = 2-1G-1o~1k. 'The twisting has a clockwise sense when viewed
in the positive direction of the z-axis. We will assume that there is an
glastic core, namely the simply-comnected region D with boundary L 1lying
entirely inside I (Fig.l). The doubly-connected region bounded by I and
L will be denoted by B . In this region the
material is in a completely plastic state. The
indices x , y will be used to indicate partial
derivatives, as well as for the usual purpose of
Indicatlng the components of stress, where this
does not lead to confusion.

P r The elastic-plastic tdrsion problem, which
! henceforth will be called problem A, is formu-

Fig. 1 lated as follows.

Problem A . (lven a simply-connected region F bounded by. the
oval T satisfying the above-mentioned smoothness condltions. In the simply-
connected region D2 , which together with its boundary L 1lies inside F ,
it is required to find to within an arbitrary additive constant the function
y{x,y) that 1s (1) single~valued and continuous in F + T , (2) has conti-
nuous first order partial derivatives 4¥,, ¥, in 7 + T , (3) has continuous
second order partial derivatives y,,, ¥x,, ¥yy in D , and (4) satisfies
the following conditlions:

‘bxx + ‘p!lfl = a—ls ¢x2 + 1%2 < 1 in region D (1.1)
P3P 2=1 B=F—(D+L)) in region L4+ 8+T (1.2)
gradp=1nr  on boundary T (1.3)

where np 1s the unit outward normal to the boundary curve T .
Note 1.1. The quantity a¢ = 2°'6¢ 'a 'k 4s regarded as parameter
O<ag<e=,

Note 1.2. It follows from (1.3) that the function y({x,y) is con-
stant on ' . We will assume that

Y@, yp=0 (1.4)
Note 1.3. The shear stresses are
T = Iﬂpy, Ty = = ky,

Note 1.4, The problem of the flow of a dilatant fluld through a
tube [13] of elliptic cross-section F has a simllar formulation. Another
hydrodynamic interpretation of Problem-A was given by von Mises [s].

2. Uniqueness of solution., Let » Dbe an arbltrary point on the contour
I . ILet xyRy, be the moving coordinate system (Fig.l} in the xy-plane formed
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by the tangent RAx, to I' at A pointed in the directlion of increasing are-
length, and the inward normal Ry, . We wlll assume that the tangent to T
at the point of intersection with the x-axis is perpendlcular to the x-axis.
The angle between Rx; and Ox will be denoted by 8 . The eqiation of the
oval T can be represented in the form [14]

2 @)=L cosp+ MB)sing, 7 (B) = L sinp— M(B)cosp
(tfar < B < 3fam) 2.9
where M{p) 1s the basic function on T . We have the relation
p(B) =M (@) + TH (2,2)

where p{g) 1s the radius of curvature of T as a function of g .

Note 2.1. According to (2.1), each B & [Y,n,5/,n) 1s assoclated
with one and only one point R &T.

Note 2.2. It is clear that M B) e C%, 1l.e. a*M (P)/dpf* 1s a con-
tinuous funection for B & [Y,m, 5/y70).

Definitilon. The curve [ situated within I has property Z
if the following conditions are fulfilled:

a) The curve [ admits a representation of the form

X@) =2z@B)—N@)sinp, YB) =y B) +N@B)cosp (2.3)
(em B < %fam)
where x°(g) and ;°{g) are taken from {2.1) and ¥(g) has period 2y and
is a continuous function of B in [i,g §/,;), with ONP) <o)

b) For two distinet arbitrary angles B = B, and B = B, in [#m, %)
the line segments R,¢, and R,0. do not have a point of Intersection (*).
Here, each point R; e I' corresponds to a g, satisfying (2.1) and each
point Q; € L corresponds to a &, satisfying (2.3) (¢ = 1, 2).

Note 2.3. It 4s clear that [ 1is a simple Jordan curve such that to
each value of P & [Yym, 8/yn) there is one and only one point @ exL; given
by (2.3). Moreover, fl(s) 1s the ordinate of this peoint in the system of
coordinates x,Ry. , 1.e 1t is the length of the segment @r (Fig.l).

Theorem 2.1. If a solution of Problem A having property ¥ on
the contour I exists, and i1f the function ¥{x,y) 1s twice continuously
differentiable (**) in L + 5 + T , then this solution is unique.

Let 1t be assumed that Problem A has a solution with the properties men=-
tioned in Theorem 2.1; then the followling assertions sre valid.

2.1°, In the xyy-space the functions ¢{x,y), where the points (x,y)
lie in L + B + T , generate a surface whose parametric representation is

f]M{") )
8L [M((3)— 3
a3 cosBl (3) —u] sin (Yo < B < 5/s0) 2.4)

X ==

*) 1In particular, polnts @, and ¢, do not coincide.

**) 1.e. ¥(x,y) has continuous second order derivatives which are con-
tinuously extensible from B onto I and T .
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{2.4)
y= dAgB(B) sin B — {M (B) — u] cos B cont.

O<ueNE)

Y=u

It is to be noted that Pormulas (2.%) alsc result if one uses the Cauchy
method to solve the Cauchy problem for Equation (1.2) using the conditions
(1.3) and (1.4), where T 1is taken in the form (2.1). The validity of
assertion 2.1° follows [15] from the fact that ¢({x,y) has continuous second
order derivatives in L + B + T and that the projections on the xy-plane of
the characteristics of the integral surface satlsfying Equation (1.2) and
condition (1.3) do not intersect (*) in I + B + T , since they coincide with
the normals to T .

Corollary 2.1. In L + 8+ 7T the following relations hold:
P, = — sin §, }, = cos B, V—ap, —yp, =M B} (2.5)

Note 2.4, From Note 2.1 and relations (2.5) which hold in particular
on 1 , it follows that each of the functions ¥.(x,y), ¥,(x,y) do not assume
on L &any partlicular value more than twice.

2.2°. Everywhere in region D
‘pxx‘Pw - \P:cya * 0 (2-6)
Proof . Let polnt (z, yo)=D and

YuxPyy — ‘quz =0
Without limiting the generality, one can assume (**) that

"ny (Zl'a, yﬁ) = QPxx (20’ 310) =0

Then, ([16], page 428} the harmonic function ¥, {x,y) assumes the value
¥x (X ,00) at at least four distinct points on the contour {#**»),

2.3°. Formulas

== — Py (7, Y), n=—1y (=, v), (x,yy&€D+L 2.7)
effect a homeomorphle mapping of D + L onto the circle X + C in the en-
plane. Thls circle 1s defined by the inequality E2 4 n2 1.

This assertion 1s vindicated as follows: (1) since the functions vy, (x,¥)
and ,(x,y) are continuous in D + L , Formulas (2.7) represent a cne~to=-
one mapping of L onto the circumference ¢ of unit radius, i.e. €3+ n°= 1;
{2) the Jacobian of mapping (2.7) is nonzero in region 2 ([17], page 22).

2.4°, Everywhere in region 2

‘pxx‘!pw - ‘pxyz > 0

Proof ., Let the contrary be assumed. Then the index of the isolated
singular point in the continuous vector fleld gq = (t,,t } will be ~31.This,
however, 18 impossible, since the index of I relative to q is 1 (see,
for example, [18]).

Corollary 2.2. Everywhere in D

‘pxx <0, 'll)uy <0

*) Thus, property Z of curve T guarantees the single-valued continua-~
tion from T onto L of the Cauchy data (1.3) along the projections of the
characteristics onto the x;-plane.

**} By rotating the coordinate system, the second mixed partial derivative
can always be made zero at point {x5,y ). At the same time, the Laplacian
and the Hessian remain constant, and the property mentionéd in Note 2.4 also
remains unaltered.

*#%%) If at the point (xo,ys) all partial derivatives with respect to x and
¥ of ¥, are zero, then §, is constant in the vicinity of point (xg,¥o)
and consequently also in 2 + 1
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2.5%, Let us introduce the notation

® = —ap, —yp, + ¥ (2.8)

and regard ¢ as a function of the varlables € , n defined in (2.7). The
function &€, 1) is then continuous in the closed circle X + ¢ , and in &
it satisfies (*) Equations

2
O @, — D, — 2 (D + D, ) =0 (2.9}
and the inequalitiles
(Dii> 0, (Dmf>0 (2.10)
On the clircumference (¢ this function satlsfies the condition
O, (€, M} lc=M(8-+am) (2.11)
where 6 1s the polar angle in the £n-plane. In circle X we have_ the
identitles .
O (€, 1) ==, ®, E =y (2.12)

The proof of 2.5° follows from the properties of the Legendre transforma-—
tion [19].

2.6°, Let us use the notation

wEmn)=OEN — Y 8+ 1)+ Yy (2.13)
The funetion w{e, m) is continuous in X + C , and on the circumference
of the circle its value 1s
w (&g = MO+ Y (2.1%)
and inslde X 1t satisfies the Monge-Ampere equation
wyy W — w2 = al (2.45)
and the lnequalities
w., >0, wm>0 (2.16)

Note 2.5 There exists at most one function w(g, m) that (1) is
continuous in X + € , and {2) satisfies Equation {2,15), inequalities (2.16)
in X , and condition (2.14) on C .

Proof of theorem 2.1. First of all we remark that, by
virtue of 2.1° and the uniqueness of the Dirichlet problem, there can not be
two distinet solutions of Problem A for Equation (1.1) with the same curves
L having property £ . Moreover, by virtue of Note 2.5 the function @(g,n),
which satisfies Equation (2.9) and inequality (2.10) in X and condition
{2.11) on ¢ , is unique. Finally, by virtue of Formula (2.12) the region
D and consequently curve L are uniquely determined by function o{e, n
This proves Theorem 2.1.

Corollary 2.3. If
a & kGIQTYr Al 247
Problem A has no solutlon possessing the properties mentioned in Theorem 2.1.

Proof . Let I denote the mapping under (2.7) of the circle Cs,
given by E =106, 08 1, and let [)s denote the closed region
bounded by L When o satisfiles inequality {2.17), this contradicts the
following easily established inequality:

{ 1
n(t—8) =175 S PP, — P db, = SS (Paxbyy — Wry?) 420y iz @

Ly Dy
3, Existenoe of solution, Theorem 3.1. If

02 > Lk Gpmin (31)

*) Here and in what follows the subscripts £, m 3indicate partial differen-
tiation,
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then the solution of Problem A exists. Moreover, the contour I has pro-
perty £ and the function #{x,y) has continuous second order derivatives
in L+8+T .,

The proof of this theorem consists in constructing the contour L and
the function ¢{x,y) satisfying the conditions formulated in Section 1. For
this we will adopt the line of argument in Section 2.

3.1°, There exists a function w(g,n) which has continuocus second order
derivatives in the closed circle X + ¢ defined by the lnequality €%+ n’€1,

and which satisfies Equation (2.15) and inequalities (2.16) in X + ¢ and
condition (2.1%) on the unit circle ¢ .

The proof of this assertion follows from [20 to 22] if it 1s assumed that
M @ -+ Y,n) € C* 0B < 2n

Note 3.1. For the radial derivative of function w(g,n) on ¢ the
following inequality holds (0 <CO <(2m) :

] a , 8 S
w04 EHOLAD o w1, =200 = VETR 62

where my 1s a constant depending on the maximum modulus of the derivatives
of order up to and including the fourth of (s + #n) {[16], page 136).

Note 3.2. Let (g,,m) and (£s,nz) be two distinct points on the
closed curve X + ¢ . Then we have the lnequality [ 23]

(Be— &1) [wg (s, M) — g (Er, M0)] + (s — M) [0, (B, Mo) — w,, (Ex, M)} >0 (3.3)

Note 3.2°. Having proved the existence of function w{g,n) in 3.1°,
let us define function %%g,n) by means of Equation (2.13), when ?g,n) lies
in X +C . Then , in the circle X + ¢ , function <!>(§,n} satisfles Equa-
tion (2.9) and inequality {2.10); on ¢ 1t satisfies condition (2.11).
Thus, for any two distinct points {g,,n.) and {€.,nm.) in Kk + ¢ the follow-
ing inequality is satisfied

a[(E2 — %12 + (s — )] < [ D (Bay M) — Dy (E1, M1)]2 + [D (B, Ma) — O (51, m)]® (3:4)

3,3°. Now we introduce the notation
z =@ (§, 1), y=0_ (&, 1) (3.5)

where (§, " X 4 C and function o(g,n) 1s the same as that in 3.2°, Then
Formula (3.5) furnishes a homeomorphic mapping of X + ¢ onto a certain
closed)region 2 + L of the xy-plane. Equation L of the image of (¢
with the notation 8 =8 + #nr) can be written in the form (2.3), where

NE=M@B)—0. (4,8

a0
@, (1, 0) = (5:),:1 Cha<B<hm) (3.6)

Proof . The homeomorphic character follows from (3.%) if it is
assumed that @; (&, M} and (Dﬂ(i, M) are continuous in X + . Setting ¢ = cos @,
n = sin g and éxpressing ®: (€, n)|- and @ (E, n)|; in terms of @ (1,0
and ®g(1, 0) =d¥W (0--1>m)/d] we obtain thé equatgon of I in the Ytorm
(2.3) with ¥(g8) defined by Equation (3.6).

Note 3.3, To each 3& |2, 32) corresponds one and only one point
on the curve L ., The curve L 1is smooth.

Corollary 3.1. The vector

v (30) = (dY (30) [ d2 —dX (20) ] d3) (3.7)
1s collinear with the vector normal to L at the point [, B, & [V, *,d).
Proof . As 8 increases, the circumference (¢ 1s traversed in the

positive sense (region X remains to the left) and the Jacoblan of the
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mapping (3.5) is strictly positive on L by virtue of (2.9) and (2.10).
Thus, the curve L 1is also traversed in the positive sense when B= g+ &nm
increases, Whence follows that the vector

t(Bo) = (X (B) /4B, dY (30)/4dB)

18 directed along the tangent to L in the direction of positive rotation.
The vector VL(ﬂQ can then be obtalned by rotation of t;, (By) clockwise
through an angle #n

3.4°, We will write
Y=—E0; — P, 4@ (3.8),

and consider ¢ as a function of x and y determined by Formula (3.5).

Then the function v(x,y) has a continuous derivative in D + L , satisfies
Equation (1.1) 1n region D , and fulfills relations (2.5) and (2.6) on I .
Thus, for - Equations — P, (z, y) = § and —~ P, (x,y) =1 hold.

Corollary .2. The angle between the vector *(g)= (sinpg, —cosg)
and the vector y (B) (see (3.7)) is strictly less than #n for arbitrary
p & [Yym, 3/ym).

Indeed, by virtue of (3.2) the scalar product of these vectors is positive
definite.

3.5°., Let @, and @, be two distinct points on curve L which corres-
pond, respectively, to the distinet points El’ﬁzes[ /a7, 5/3m).  Then, the
half-lines 1(¢,) and 1{(Q,) that originate in points ¢, and ¢, and have the

direction of the vectors t () = (sinP, —cosf) and ¢ = (sin By, — c0S B) ,
respectively, will not intersect. (Ba) = (sin By, B)

Proof . The equations of the half-lines 1(Q,) and 1(Q.) can be
written as )
z; (M) = X (3;) + A sin By, yi (M) = Y (B;) — Aq cos By
<hi< oo (i=1,2)

Let us assume that the half-lines 1(Q,) and 1(¢.) intersect; thlsg means
that there are values A, A¥ such that X;*+ Ag¥> 0 and such that

;. M*) = 2,(0*), M*) = ya (A%
Now we will make use of inequality (3.3) in assuming
E;=sin By, ni = —cos By, we (Bq, M) =X (3) — ey, w, (B, M) =Y @) —am; (i =1, 2)
It will then be found that
—(Mm* -+ 2e*) 1 —cos(B1—B2)] >0
which 1s impossible.

3.6°. For an arbitrary B & [Y2®,5%2Mm) the function WN(g) defined by
Formula (3.6) is positive definite.

Proof . Let Pg=(cosb, sinfp) be an arbitrary fixed point on the
circumference (¢ . We will introduce the function

@* (8, 1) = dM (80 + /2 71) /dB r sin (8 — Bo)~+ [M (80 -+ Y2 ) — ppyyp] cOs (B — B0) +

+art +ppp —a
and the notation

AEG, M=0(E, n)— DO*(E, n), AE, )=, =8(9), EnNEK4C
where the function &(g,n) is thHe same as in 3.2°. Since
g (00) = dyg (80} { 4O =0, d%g (8)[d6® + g (8) >0

it follows that £(8) >0 in the whole interval (<0< 2n. In so far as the
function a(e,n) satisfies in X the elliptic differential equation

(Dm/_\:; —2(D: -A_._ + (I):: Am =0
1t follows that A(Z, 1) =20 in region X + ¢ . Consequently
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0A (&, m)
—or |p, S0

1.e. N(Bo)>ppn—2a, where Bo=0 -+ 1sn. Taking (3.1) into account, we find
that ¥(Bo) 1s posltive.

3.7°. Let ¢ Vbe an arbitrary point on curve L corresponding to some

B E [, 5/,), and [ (Q) be the half-line originating in point ¢ and
directed parallel to the vecter
() = (sin B, — cos )

If the point R 1s chosen on Z(a& such that the digtance of point ¢
from polnt R is equal to ¥(B), where ¥(g) is defined by (3.6), then the totality of
points R corresponding to all .B & [Yym, %/an), constitutes the curve T .
Thus B is the angle of inclination to the x-axis of the tangent at point

R to curve T , where the direction of the tangent 1s that of positive
motlon around T

3.8°. cCurve I has property £ .

We must obviously check that N ) for & [Y,m, 8/yn). This follows
from inequality (3.2). ®<e® B v

3.9°. Let B denote the region between I' and L . We will define the
function ¥(x,y) in L + B + T by means of Equations (2.4) when

Yan < B <%m, 0<usSNE

where #(p) 1s determined by (3.6). Then,.in L + B + T function ¥(x,y)
satisfies Equation (1.3) and on T the conditions (1.3) and (1.4%). Equations
(2.5) are satisfied on L

3.10°. The contour I determined by Equations (2.3) with ¥(B) in the
form (3.6) and function ¢(x,y) defined in F + I' by the method mentioned
in 3.4° and 3.9°, 1s the solution of Problem A, This completes the proof of
Theorem 3.1.

Corollary 3.3. For arbitrary § & [Vy®, %/,n) we have

Pmin — K62t <N B) <p B) — k271Gl (3.9)
Corollary 3.4. If
a < k271G 1p ™

then no solution of Problem A having the propertles mentioned in Theorem 2.1
exlsts.

4, Some properties of the solution of Problem A, 4.1°. Let qz>a; .
We will denote the two values of « introduced in Sections 1 to 3 by «; and
az, respectively. Then for an arbitrary B e [Y/,n,8/,n) we have

1 k1 i k1 1
Mergg (s —n)<me<mo+z (- o) @)

o
Proof . We will use the notation
A =12 (0 40 + Way,)s B =12 ()3, + Wazy)s O =1a (wyyz + Wy
H(E, n)=wa(E, n)—w(E n) G nek-+C, E2-L 2t
k i i
H* &, ) =w(g 1) —we (€ M) — 7 <;; - 3;) (B+n2—1), o, <
Since the following inequalities hold on curve X
A>0, B >0, C—(BRE>0
AHyy — 2B H g4 C'1 0, AH L — 2B * - C'IL* L0
the functions H#(g,n) and %*(¢.n) can not attain thelr respective minima in

¥ [22). Provided H (&, 0= H* E, Mg =0, we have dH (1,0)/dr< 0 and
I* (1, 0) / ar < 0e Whence follows the valgdity of inequality (4.1), i1f one
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takes a value q, slightly different from aq,.

4.,2°, If the curve T 1is symmetric with respect to some axils, then curve
L 1s also symmetric with respect to the same exis,.

Proof . Let I be symmetric wlth respect to the x-axls, i.e.
M@© 4 Yym) = M (— 6 + 1)

and let the function ® (&, 1), (§,n) & K + €, have the same sense as in Sec~
tion 3. By virtue of the Note 2.5, @ (1, —0) = D, (1, 0).

Note 4,1. It is known that it 1s impossible to construct in ¥ + T
a continuous solution of Equation {1.2) with boundery condition (1.3) such
that the derivatives ¢, and ¢, are continuous in 7 + T {(vecause the index
of T relative to a continuous vector field ¢ = (¥,,¥,) in F + T 1s equal
to unity [18]). However, such a construction is possibie in F+TI -1,
where 1 18 a certain region lying in F . We will limit consideration to
certain contours I for which ! consists of straight-line segments, and
will prove that, for an arbitrary value of g , I 1lies inside region J .

a) The curve T 1s symmetric, is elongated along the x-axls, and has
only four vertices {the vertex of an oval 1s a point where the curvature is
extremal; every oval has at least four vertices). In this case, ! 1s the
segment of the x-axis [24] Jjoining the centers of curvature §,, S, of the
contour at points T, and T, lying on the x-axis (see Fig.2). By virtue of

(3‘97, L intersects the x-axls at a point lying
between T, and §; and also at a point between T,
¥ and S;. If I ‘touchss or intersects the segment
5,5s , then it follows by virtue of 4.2° that region
7 would not be simply connected. Thus, ! 1lles
7, S, |2 5, \5 inside D .

F 4 b) Let the convex curve T, approximate to_a
regular polygon and be defined by Equation [25]

x =R {feost+ (n— D 7 cos (n — 1) t]
y=R|[fsint — (n — D "sin {n — 1) 1]
o<tLn, f=(m—10D"1e >0

In this case curve I consists of n segments Joining the points of
intersection of each of the symmetry axes of [, with the centers of curva-
ture of the points on I', corresponding to ¢t = 2ni/m (i =0, 1, vees{n—=1)).
By virtue of {3.9) and 4.2°, [l 1ies inside 1 .

Fig. 2
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